3.8.14 \(\int \frac {\sqrt {d+e x} \sqrt {f+g x}}{\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [714]

3.8.14.1 Optimal result
3.8.14.2 Mathematica [A] (verified)
3.8.14.3 Rubi [A] (verified)
3.8.14.4 Maple [A] (verified)
3.8.14.5 Fricas [A] (verification not implemented)
3.8.14.6 Sympy [F]
3.8.14.7 Maxima [F]
3.8.14.8 Giac [B] (verification not implemented)
3.8.14.9 Mupad [F(-1)]

3.8.14.1 Optimal result

Integrand size = 48, antiderivative size = 169 \[ \int \frac {\sqrt {d+e x} \sqrt {f+g x}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c d \sqrt {d+e x}}+\frac {(c d f-a e g) \sqrt {a e+c d x} \sqrt {d+e x} \text {arctanh}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{c^{3/2} d^{3/2} \sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \]

output
(-a*e*g+c*d*f)*arctanh(g^(1/2)*(c*d*x+a*e)^(1/2)/c^(1/2)/d^(1/2)/(g*x+f)^( 
1/2))*(c*d*x+a*e)^(1/2)*(e*x+d)^(1/2)/c^(3/2)/d^(3/2)/g^(1/2)/(a*d*e+(a*e^ 
2+c*d^2)*x+c*d*e*x^2)^(1/2)+(g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2 
)^(1/2)/c/d/(e*x+d)^(1/2)
 
3.8.14.2 Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.82 \[ \int \frac {\sqrt {d+e x} \sqrt {f+g x}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {\sqrt {d+e x} \left (\sqrt {c} \sqrt {d} \sqrt {g} (a e+c d x) \sqrt {f+g x}+(c d f-a e g) \sqrt {a e+c d x} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {f+g x}}{\sqrt {g} \sqrt {a e+c d x}}\right )\right )}{c^{3/2} d^{3/2} \sqrt {g} \sqrt {(a e+c d x) (d+e x)}} \]

input
Integrate[(Sqrt[d + e*x]*Sqrt[f + g*x])/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c 
*d*e*x^2],x]
 
output
(Sqrt[d + e*x]*(Sqrt[c]*Sqrt[d]*Sqrt[g]*(a*e + c*d*x)*Sqrt[f + g*x] + (c*d 
*f - a*e*g)*Sqrt[a*e + c*d*x]*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])/(Sqr 
t[g]*Sqrt[a*e + c*d*x])]))/(c^(3/2)*d^(3/2)*Sqrt[g]*Sqrt[(a*e + c*d*x)*(d 
+ e*x)])
 
3.8.14.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {1253, 1268, 66, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {d+e x} \sqrt {f+g x}}{\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \, dx\)

\(\Big \downarrow \) 1253

\(\displaystyle \frac {(c d f-a e g) \int \frac {\sqrt {d+e x}}{\sqrt {f+g x} \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 c d}+\frac {\sqrt {f+g x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d \sqrt {d+e x}}\)

\(\Big \downarrow \) 1268

\(\displaystyle \frac {\sqrt {d+e x} \sqrt {a e+c d x} (c d f-a e g) \int \frac {1}{\sqrt {a e+c d x} \sqrt {f+g x}}dx}{2 c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac {\sqrt {f+g x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d \sqrt {d+e x}}\)

\(\Big \downarrow \) 66

\(\displaystyle \frac {\sqrt {d+e x} \sqrt {a e+c d x} (c d f-a e g) \int \frac {1}{c d-\frac {g (a e+c d x)}{f+g x}}d\frac {\sqrt {a e+c d x}}{\sqrt {f+g x}}}{c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac {\sqrt {f+g x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d \sqrt {d+e x}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\sqrt {d+e x} \sqrt {a e+c d x} (c d f-a e g) \text {arctanh}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{c^{3/2} d^{3/2} \sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac {\sqrt {f+g x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d \sqrt {d+e x}}\)

input
Int[(Sqrt[d + e*x]*Sqrt[f + g*x])/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x 
^2],x]
 
output
(Sqrt[f + g*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(c*d*Sqrt[d + 
e*x]) + ((c*d*f - a*e*g)*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[g]* 
Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])])/(c^(3/2)*d^(3/2)*Sqrt 
[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])
 

3.8.14.3.1 Defintions of rubi rules used

rule 66
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] &&  !GtQ[c - a*(d/b), 0]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1253
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e)*(d + e*x)^(m - 1)*(f + g*x)^n* 
((a + b*x + c*x^2)^(p + 1)/(c*(m - n - 1))), x] - Simp[n*((c*e*f + c*d*g - 
b*e*g)/(c*e*(m - n - 1)))   Int[(d + e*x)^m*(f + g*x)^(n - 1)*(a + b*x + c* 
x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[c*d^2 - b*d* 
e + a*e^2, 0] && EqQ[m + p, 0] && GtQ[n, 0] && NeQ[m - n - 1, 0] && (Intege 
rQ[2*p] || IntegerQ[n])
 

rule 1268
Int[((d_) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_ 
) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x + c*x^2)^FracPart[p]/((d 
 + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p])   Int[(d + e*x)^(m + p)*(f 
 + g*x)^n*(a/d + (c/e)*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x 
] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
 
3.8.14.4 Maple [A] (verified)

Time = 0.63 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.13

method result size
default \(-\frac {\sqrt {g x +f}\, \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (\ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) a e g -\ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) c d f -2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}\right )}{2 \sqrt {e x +d}\, \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, c d \sqrt {c d g}}\) \(191\)

input
int((g*x+f)^(1/2)*(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, 
method=_RETURNVERBOSE)
 
output
-1/2*(g*x+f)^(1/2)*((c*d*x+a*e)*(e*x+d))^(1/2)*(ln(1/2*(2*c*d*g*x+a*e*g+c* 
d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*a*e*g-ln(1 
/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(c*d*g)^(1/2))/(c* 
d*g)^(1/2))*c*d*f-2*((g*x+f)*(c*d*x+a*e))^(1/2)*(c*d*g)^(1/2))/(e*x+d)^(1/ 
2)/((g*x+f)*(c*d*x+a*e))^(1/2)/c/d/(c*d*g)^(1/2)
 
3.8.14.5 Fricas [A] (verification not implemented)

Time = 0.75 (sec) , antiderivative size = 521, normalized size of antiderivative = 3.08 \[ \int \frac {\sqrt {d+e x} \sqrt {f+g x}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\left [\frac {4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} \sqrt {g x + f} c d g - {\left (c d^{2} f - a d e g + {\left (c d e f - a e^{2} g\right )} x\right )} \sqrt {c d g} \log \left (-\frac {8 \, c^{2} d^{2} e g^{2} x^{3} + c^{2} d^{3} f^{2} + 6 \, a c d^{2} e f g + a^{2} d e^{2} g^{2} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d g x + c d f + a e g\right )} \sqrt {c d g} \sqrt {e x + d} \sqrt {g x + f} + 8 \, {\left (c^{2} d^{2} e f g + {\left (c^{2} d^{3} + a c d e^{2}\right )} g^{2}\right )} x^{2} + {\left (c^{2} d^{2} e f^{2} + 2 \, {\left (4 \, c^{2} d^{3} + 3 \, a c d e^{2}\right )} f g + {\left (8 \, a c d^{2} e + a^{2} e^{3}\right )} g^{2}\right )} x}{e x + d}\right )}{4 \, {\left (c^{2} d^{2} e g x + c^{2} d^{3} g\right )}}, \frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} \sqrt {g x + f} c d g - {\left (c d^{2} f - a d e g + {\left (c d e f - a e^{2} g\right )} x\right )} \sqrt {-c d g} \arctan \left (\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {-c d g} \sqrt {e x + d} \sqrt {g x + f}}{2 \, c d e g x^{2} + c d^{2} f + a d e g + {\left (c d e f + {\left (2 \, c d^{2} + a e^{2}\right )} g\right )} x}\right )}{2 \, {\left (c^{2} d^{2} e g x + c^{2} d^{3} g\right )}}\right ] \]

input
integrate((g*x+f)^(1/2)*(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1 
/2),x, algorithm="fricas")
 
output
[1/4*(4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x 
 + f)*c*d*g - (c*d^2*f - a*d*e*g + (c*d*e*f - a*e^2*g)*x)*sqrt(c*d*g)*log( 
-(8*c^2*d^2*e*g^2*x^3 + c^2*d^3*f^2 + 6*a*c*d^2*e*f*g + a^2*d*e^2*g^2 - 4* 
sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*g*x + c*d*f + a*e*g)*sq 
rt(c*d*g)*sqrt(e*x + d)*sqrt(g*x + f) + 8*(c^2*d^2*e*f*g + (c^2*d^3 + a*c* 
d*e^2)*g^2)*x^2 + (c^2*d^2*e*f^2 + 2*(4*c^2*d^3 + 3*a*c*d*e^2)*f*g + (8*a* 
c*d^2*e + a^2*e^3)*g^2)*x)/(e*x + d)))/(c^2*d^2*e*g*x + c^2*d^3*g), 1/2*(2 
*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f)*c 
*d*g - (c*d^2*f - a*d*e*g + (c*d*e*f - a*e^2*g)*x)*sqrt(-c*d*g)*arctan(2*s 
qrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*g)*sqrt(e*x + d)*sqrt 
(g*x + f)/(2*c*d*e*g*x^2 + c*d^2*f + a*d*e*g + (c*d*e*f + (2*c*d^2 + a*e^2 
)*g)*x)))/(c^2*d^2*e*g*x + c^2*d^3*g)]
 
3.8.14.6 Sympy [F]

\[ \int \frac {\sqrt {d+e x} \sqrt {f+g x}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {\sqrt {d + e x} \sqrt {f + g x}}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}\, dx \]

input
integrate((g*x+f)**(1/2)*(e*x+d)**(1/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x** 
2)**(1/2),x)
 
output
Integral(sqrt(d + e*x)*sqrt(f + g*x)/sqrt((d + e*x)*(a*e + c*d*x)), x)
 
3.8.14.7 Maxima [F]

\[ \int \frac {\sqrt {d+e x} \sqrt {f+g x}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int { \frac {\sqrt {e x + d} \sqrt {g x + f}}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}} \,d x } \]

input
integrate((g*x+f)^(1/2)*(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1 
/2),x, algorithm="maxima")
 
output
integrate(sqrt(e*x + d)*sqrt(g*x + f)/sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a* 
e^2)*x), x)
 
3.8.14.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 380 vs. \(2 (141) = 282\).

Time = 0.43 (sec) , antiderivative size = 380, normalized size of antiderivative = 2.25 \[ \int \frac {\sqrt {d+e x} \sqrt {f+g x}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=-\frac {e {\left (\frac {g {\left (\frac {{\left (c d e f {\left | e \right |} - a e^{2} g {\left | e \right |}\right )} \log \left ({\left | -\sqrt {e^{2} f + {\left (e x + d\right )} e g - d e g} \sqrt {c d g} + \sqrt {-c d e^{2} f g + a e^{3} g^{2} + {\left (e^{2} f + {\left (e x + d\right )} e g - d e g\right )} c d g} \right |}\right )}{\sqrt {c d g} c d} - \frac {\sqrt {-c d e^{2} f g + a e^{3} g^{2} + {\left (e^{2} f + {\left (e x + d\right )} e g - d e g\right )} c d g} \sqrt {e^{2} f + {\left (e x + d\right )} e g - d e g} {\left | e \right |}}{c d e g}\right )}}{e^{2} {\left | g \right |}} - \frac {c d e^{2} f g {\left | e \right |} \log \left ({\left | -\sqrt {e^{2} f - d e g} \sqrt {c d g} + \sqrt {-c d^{2} e g^{2} + a e^{3} g^{2}} \right |}\right ) - a e^{3} g^{2} {\left | e \right |} \log \left ({\left | -\sqrt {e^{2} f - d e g} \sqrt {c d g} + \sqrt {-c d^{2} e g^{2} + a e^{3} g^{2}} \right |}\right ) - \sqrt {-c d^{2} e g^{2} + a e^{3} g^{2}} \sqrt {e^{2} f - d e g} \sqrt {c d g} {\left | e \right |}}{\sqrt {c d g} c d e^{3} {\left | g \right |}}\right )}}{{\left | e \right |}} \]

input
integrate((g*x+f)^(1/2)*(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1 
/2),x, algorithm="giac")
 
output
-e*(g*((c*d*e*f*abs(e) - a*e^2*g*abs(e))*log(abs(-sqrt(e^2*f + (e*x + d)*e 
*g - d*e*g)*sqrt(c*d*g) + sqrt(-c*d*e^2*f*g + a*e^3*g^2 + (e^2*f + (e*x + 
d)*e*g - d*e*g)*c*d*g)))/(sqrt(c*d*g)*c*d) - sqrt(-c*d*e^2*f*g + a*e^3*g^2 
 + (e^2*f + (e*x + d)*e*g - d*e*g)*c*d*g)*sqrt(e^2*f + (e*x + d)*e*g - d*e 
*g)*abs(e)/(c*d*e*g))/(e^2*abs(g)) - (c*d*e^2*f*g*abs(e)*log(abs(-sqrt(e^2 
*f - d*e*g)*sqrt(c*d*g) + sqrt(-c*d^2*e*g^2 + a*e^3*g^2))) - a*e^3*g^2*abs 
(e)*log(abs(-sqrt(e^2*f - d*e*g)*sqrt(c*d*g) + sqrt(-c*d^2*e*g^2 + a*e^3*g 
^2))) - sqrt(-c*d^2*e*g^2 + a*e^3*g^2)*sqrt(e^2*f - d*e*g)*sqrt(c*d*g)*abs 
(e))/(sqrt(c*d*g)*c*d*e^3*abs(g)))/abs(e)
 
3.8.14.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d+e x} \sqrt {f+g x}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {\sqrt {f+g\,x}\,\sqrt {d+e\,x}}{\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \]

input
int(((f + g*x)^(1/2)*(d + e*x)^(1/2))/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x 
^2)^(1/2),x)
 
output
int(((f + g*x)^(1/2)*(d + e*x)^(1/2))/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x 
^2)^(1/2), x)